Infrared and NMR (¹H & ¹³C) Spectra of Sodium Salts of N-Bromo-Mono and Di-Substituted-Benzenesulphonamides

B. Thimme Gowda and K. M. Usha

Department of Post-Graduate Studies and Research in Chemistry, Mangalore University, Mangalagangotri- 574 199, Mangalore, India.

Reprint requests to Prof. B. T. G.; E-Mail: gowdabt@yahoo.com

Z. Naturforsch. **58a**, 351 – 356 (2003); received February 26, 2003

Fifteen sodium salts of mono and di-substituted N-bromobenzene-sulphonamides of the configuration, $4\text{-}X\text{-}C_6H_4SO_2NaNBr}$ (where X=H; $CH_3;$ $C_2H_5;$ F; Cl; Br; or $NO_2)$ and $i\text{-}X,j\text{-}YC_6H_3SO_2NaNBr}$ (where $i\text{-}X,j\text{-}Y=2,3\text{-}(CH_3)_2;$ $2,4\text{-}(CH_3)_2;$ $2,5\text{-}(CH_3)_2;$ $2,5\text{-}(CH_3,4\text{-}Cl;$ $2\text{-}CH_3,4\text{-}Cl;$ $2\text{-}CH_3,4\text{-}Cl$

Key words: Infrared; Nuclear Magnetic Resonance; N-Bromoarylsulphonamides.

1. Introduction

The chemistry of sulphonamides is of interest as they show distinct physical, chemical and biological properties. Many arylsulphonamides and their Nhalo compounds exhibit pharmacological, fungicidal and herbicidal activities due to their oxidising action in aqueous, partial aqueous and non-aqueous media [1-9]. In an effort to introduce N-haloarylsulphonamides of different oxidising strengths, we have recently reported the preparation, spectroscopic and structural studies of several arylsulphonamides, N-chloroarylsulphonamides and N,N-dichloroarylsulphonamides [10-13]. The present paper reports the results of infrared and NMR (¹H and ¹³C) spectral studies of fifteen sodium salts of N-bromosubstitutedbenzenesulphonamides of the configuration, 4- X- $C_6H_4SO_2NaNBr$ (where X = H; CH_3 ; C_2H_5 ; F; Cl; Bror NO₂) and i-X, j-Y C₆H₃SO₂NaNBr (where i-X, j- $Y = 2,3-(CH_3)_2$; 2,4-(CH₃)₂; 2,5-(CH₃)₂; 2-CH₃,4-Cl; 2-CH₃,5-Cl; 3-CH₃,4-Cl; 2,4-Cl₂ or 3,4-Cl₂).

The N-bromosubstitutedbenzenesulphonamides prepared and studied are:

- 1. N-Bromobenzenesulphonamide,
- 2. N-Bromo-4-methylbenzenesulphonamide,
- 3. N-Bromo-4-ethylbenzenesulphonamide,
- 4. N-Bromo-4-fluorobenzenesulphonamide,
- 5. N-Bromo-4-chlorobenzenesulphonamide,
- ${\it 6.\ N-Bromo-4-bromoben zene sulphonamide},$
- 7. N-Bromo-4-nitrobenzenesulphonamide,
- 8. N-Bromo-2,3-dimethylbenzenesulphonamide,
- 9. N-Bromo-2,4-dimethylbenzenesulphonamide,
- 10. N-Bromo-2,5-dimethylbenzenesulphonamide,
- 11. N-Bromo-2-methyl-4-chlorobenzene-sulphonamide,
- 12. N-Bromo-2-methyl-5-chlorobenzene-sulphonamide,
- 13. N-Bromo-3-methyl-4-chlorobenzene-sulphonamide,
- 14. N-Bromo-2,4-dichlorobenzenesulphonamide and
- 15. N-Bromo-3,4-dichlorobenzenesulphonamide.

Sl.	Substituted benzene-	m.p. (°C)	Sodium salts of N-Bromo-	m.p. (°C)
No	sulphonamides	obs ([10])	substituted benzenesulphonamides	
1	4-C ₂ H ₅ -C ₆ H ₄ SO ₂ NH ₂	99 – 101	4-C ₂ H ₅ -C ₆ H ₄ SO ₂ NaNBr.H ₂ O	121
2	4-F-C ₆ H ₄ SO ₂ NH ₂	125 (124 – 125)	4-FC ₆ H ₄ SO ₂ NaNBr.H ₂ O	220
3	4-Cl-C ₆ H ₄ SO ₂ NH ₂	143 (142 – 143)	4-ClC ₆ H ₄ SO ₂ NaNBr.H ₂ O	232
4	4-Br-C ₆ H ₄ SO ₂ NH ₂	162 (161.5)	4-BrC ₆ H ₄ SO ₂ NaNBr.H ₂ O	211
5	$4-p-NO_2-C_6H_4SO_2NH_2$	167 (167)	4-NO ₂ C ₆ H ₄ SO ₂ NaNBr.H ₂ O	180 - 182
6	2,3-(CH ₃) ₂ -C ₆ H ₃ SO ₂ NH ₂	138 - 140	2,3-(CH ₃) ₂ -C ₆ H ₃ SO ₂ NaNBr.H ₂ O	170
7	2,4-(CH ₃) ₂ -C ₆ H ₃ SO ₂ NH ₂	140 - 142	2,4-(CH ₃) ₂ -C ₆ H ₃ SO ₂ NaNBr.H ₂ O	175
8	2,5-(CH ₃) ₂ -C ₆ H ₃ SO ₂ NH ₂	149 – 151	2,5-(CH ₃) ₂ -C ₆ H ₃ SO ₂ NaNBr.H ₂ O	135
9	2-CH ₃ ,4-Cl-C ₆ H ₃ SO ₂ NH ₂	158 – 160 (184 – 185)	2-CH ₃ ,4-Cl-C ₆ H ₃ SO ₂ NaNBr.H ₂ O	158 - 160
10	2-CH ₃ ,5-Cl-C ₆ H ₃ SO ₂ NH ₂	139 – 141 (142 – 143)	2-CH ₃ ,5-Cl-C ₆ H ₃ SO ₂ NaNBr.H ₂ O	147 - 150
11	3-CH ₃ ,4-Cl-C ₆ H ₃ SO ₂ NH ₂	132 – 134 (126)	3-CH ₃ ,4-Cl-C ₆ H ₃ SO ₂ NaNBr.H ₂ O	145
12	2,4-Cl ₂ -C ₆ H ₃ SO ₂ NH ₂	178 – 180 (179-180)	2,4-Cl ₂ -C ₆ H ₃ SO ₂ NaNBr.H ₂ O	210
15	3,4-Cl ₂ -C ₆ H ₃ SO ₂ NH ₂	141 – 143 (134-135)	3,4-Cl ₂ -C ₆ H ₃ SO ₂ NaNBr.H ₂ O	182

Table 1. Melting points of mono- and disubstituted benzenesulphonamides and the sodium salts of N-bromosubstitutedbenzenesulphonamides.

Assignments	$4-X-C_6H_4SO_2NaNBr.H_2O$, where $X =$											
	Н	CH ₃	C_2H_5	F	Cl	Br	NO_2					
C-H (Ar sym str)	3056.0w	3256.2w	2965.0w	3059.5w	3090.3w	3090.3w	3095.1w					
C-H (Alk str)		- 2847.8w	2915.2w	2929.3w	_	_	2360.4w					
Combination bands	-	1913.6w	_	1907.2w	1907.2w	1733.0w	-					
C=C (Ar in plane str)	1638.0w 1444.0m	1645.9w 1599.2w 1492.2m	1642.0w 1597.7w 1493.6m	1641.1m 1594.8s 1494.5s	1645.9m 1584.2m 1476.2s	1646.9w 1575.9w 1472.3w	1640.1w 1530.2w 1430.9w					
S=O (Asym str) (Sym str)	- 1137.0s	- 1131.0s	1385.6s 1136.8s	1383.0s 1136.8s	1391.3m 1136.8s	1385.6s 1132.9s	1352.8s 1148.4s					
C-H (Ar in plane bend)	1246.2s 1090.0s 1020.0w	1244.0s 1082.5s 1017.5w	1243.8s 1091.5s 1011.6w	1243.8s 1089.5s 1012.0w	1244.8s 1089.8s 1014.2w	1243.8s 1087.6s 1011.2w	1247.7s 1115.6s 1068.3s					
C-X(str)	-	-	-	1291.4s	1014.0s	593.2s	_					
N-Br(str)	933.3s	925.6s	940.1s	934.3s	941.0s	941.0s	944.9s					
S-N	756.0s	808.8s	822.0s	831.1s	824.2s	822.0s	874.5s					
(sym str) C-S(str)	717.0m	675.6s	739.5s	680.0m	753.3s	739.3s	735.7w					
C-H (Ar out of	686.4m	626.7m	656.6m	634.5s	659.4s	655.3s	666.2s					
plane bend) C=C (Ar out of plane bend)	449.0m	465.7m	460.9m	457.0w	456.m	419.4m	460.9w					

Table 2. Infrared absorption frequencies (cm⁻¹) of sodium salts of N-bromomonosubstituted benzenesulphonamides).

s = strong, m = medium and w = weak.

2. Experimental

2.1. Materials and Methods

Preparation of sodium salts of N-bromoarylsulphonamides

The arylsulphonamides were prepared by the chlorosulphonation of substituted benzenes to the respective sulphonylchlorides and subsequent treatment of the latter with concentrated ammonium hydroxide by the procedures reported in [10-17]. The

Assignments		i	-X,j-Y-C ₆ H	3SO ₂ NaNE	Br.H ₂ O , wh	ere i-X,j-Y	· =	
	2,3-	2,4-	2,5-	2-CH ₃ ,	3-CH ₃ ,	2-CH ₃ ,	2,4-	3,4-
	$(CH_3)_2$	$(CH_3)_2$	$(CH_3)_2$	4-Cl	4-C1	5-C1	Cl_2	Cl_2
С-Н	3021.9w	3090.3w	3065.3w	3101.9w	3077.8w	3090.3w	3097.1w	3097.1w
(Ar sym str)								
C-H	2972.7w	2928.3w	2978.5w	2987.2w	2928.4w	2984.3w	_	_
(Alk str)	2920.6w	2859.9w	2924.1w	2928.3w	2854.1w			
Combination	1730.8w			1931.3w	_			
Bands	1/30.6W	_	_	1931.3W 1714.4W	_	_	_	_
Dalius				1/14.4W				
C=C	1637.2w	1645.9m	1637.2w	1635.4m	1637.3w	1638.2w	1633.4m	1638.2w
(Ar in plane	1449.2s	1476.2s	1484.9m	1558.2s	1466.6m	1560.1w	1573.6s	1453.1w
str)			1450.2w	1466.6m		1465.6s	1555.3s	
			1447.3s		1447.3m	1454.0s		
S=O	1220 6	1201.2		1000 7	1202 6	1201 7	1260.2	1070.1
(Asym str)	1330.6s	1391.3m	1101 4	1382.7m	1383.6w	1381.7w	1369.2s	1370.1w
(Sym str)	1122.3s	1135.8s	1121.4s	1137.8s	1128.5s	1123.3s	1133.9s	1149.3s
С-Н	1243.8s	1244.8s	1236.1s	1237.1s	1243.6s	1240.9s	1240.9s	1240.1m
(Ar in plane	1089.5s	1089.5s	1064.5s	1099.2s	1095.3s	1058.7s	1098.2s	1094.4s
C-X(str)	_	_	_	1054.8s	1050.0s	-	1040.4s	1033.6
` '								
N-Br(str)	940.1s	941.0s	935.3s	929.5s	942.0s	935.3s	936.2s	936.1s
S-N	833.1w	824.4w	813.8s	832.1s	833.1s	833.1s	827.3s	830.2m
(sym str)	702.0	752.0	700.0	7067	705.0	702.0	670.0	670.7
C-S(str) C-H	703.8w	753.0w	700.0w	706.7s	705.0m	702.9w	678.8m	678.7m
(Ar out of	675.9s	658.5s	649.8w	654.7s	660.5s	647.9s	652.7s	660.5w5
`	585.2s	559.2s	598.7s	571.7s	582.4m	585.2	573.7s	87.2s
bend)	363.28	339.2S	390.78	3/1./8	362.4M	363.2	3/3./8	07.28
C=C	442.5w	479.2w	465.7	460.9s	465.0w	444.5w	494.6m	448.3m
(Ar out of	"							
plane bend)								
• "/								

Table 3. Infrared absorption frequencies (cm⁻¹) of sodium salts of N-bromo-disubstituted benzenesulphonamides.

s = strong, m = medium and w = weak.

Table 4. ^{1}H NMR observed and calculated δ (ppm) values of sodium salts of N-bromo-monosubstituted benzene-sulphonamides.

		δ values (in ppm)							
i-X-C ₆ H ₄ SO ₂	H _o (2	2,6)	H _m (3,5)	Alkyl				
NaNBr.H ₂ O					Н				
where i-X =	Obs.	Calc.	Obs.	Calc.					
Parent	8.10(s)	-	7.71(s)	-	-				
4-CH ₃	8.16(d)	8.00	7.62(d)	7.57	2.72(s)				
					2.67(d)				
$4-C_2H_5$	7.88(d)	8.00	7.41(d)	7.56	1.23(s)				
4-F	8.11(s)	8.12	8.01(s)	7.48	_				
4-Cl	7.96(s)	8.10	7.60(s)	7.71*					
4-Br	8.06(d)	8.10	7.90(d)	7.71*					

s= singlet, d= doublet, t= triplet and m= multiplet.* The signal at 7.71 integrates for 3 protons corresponding to 3, 4, 5.

sulphonamides were recrystallised to their constant melting point (Table 1) from dilute ethanol and dried at $105~^{\circ}$ C. The purity of all the compounds was checked

by recording their infrared spectra. The sulphonamides were then N- chlorinated to obtain sodium salts of N-chloro-arylsulphonamides [11]. Pure chlorine gas was bubbled through solutions of substituted benzene-sulphonamides in 4 mol dm⁻³ NaOH at 70 °C for about 1 h. The precipitated sodium salts of N-chloro-substituted benzenesulphonamides (CASB) were filtered, washed, dried and recrystallised from water. The purity of all the reagents was checked by determining the melting points and estimation of the amounts of active chlorine present in them [11, 18].

The N-bromosubstituted benzensulphonamides were prepared by partial debromination of N,N-dibromosubstituted benzenesulphonamides. The latter were obtained by the bromination of aqueous solution of N-chloro-substituted benzenesulphonamides. About 4 cm³ of liquid bromine was added dropwise from a microburette to a solution of about 20 gm

				δ val	ues (in	ppm)				
2-H		3-H		4-H		5-H		6-H		alkyl
										Н
Obs.	Calc.	Obs.	Calc.	Obs.	Calc.	Obs.	Calc.	Obs.	Calc.	
										1.99
_	_	_	_	7.10d	7.02	7.12d	7.07	7.46d	7.90	2.10
										1.84
-	-	7.54d	7.56	-	-	7.41d	7.46	7.94s	7.90	2.14
										2.46
-	_	7.36s	7.46	7.32s	7.22	-	_	7.91s	7.85	2.73
-	_	7.71s	7.56	-	-	7.73s	7.61	8.26d	8.00	3.01
										2.61
-	_	7.64t	7.56	7.53d	7.17	_	_	8.15d	8.00	2.85
7.00	7.05					7.50	7.61	0.00	0.00	2.40
7.82t	7.95	_	_	_	_	7.50m	7.61	8.02s	8.00	2.49
		7.040	7.71			7.700	7.71	0.440	0.10	
_	_	7.948	7.71	_	_	1.198	7.71	0.448	0.10	_
8 16c	8 10	_	_	_	_	7 92d	7 71	7 75d	7 71	_
		Obs. Calc. 7.82t 7.95	Obs. Calc. Obs. - - - - - 7.54d - - 7.36s - - 7.71s - - 7.64t 7.82t 7.95 - - - 7.94s	Obs. Calc. Obs. Calc. - - - - - - 7.54d 7.56 - - 7.36s 7.46 - - 7.71s 7.56 - - 7.64t 7.56 7.82t 7.95 - - - - 7.94s 7.71	2-H 3-H 4- Obs. Calc. Obs. Calc. Obs. - - - 7.10d - - 7.54d 7.56 - - - 7.36s 7.46 7.32s - - 7.64t 7.56 - - - 7.64t 7.56 7.53d 7.82t 7.95 - - - - - 7.94s 7.71 -	2-H 3-H 4-H Obs. Calc. Obs. Calc. - - - 7.10d 7.02 - - 7.54d 7.56 - - - - 7.36s 7.46 7.32s 7.22 - - 7.71s 7.56 - - - - 7.64t 7.56 7.53d 7.17 7.82t 7.95 - - - - - - 7.94s 7.71 - -	Obs. Calc. Obs. Calc. Obs. Calc. Obs. - - - 7.10d 7.02 7.12d - - 7.54d 7.56 - - 7.41d - - 7.36s 7.46 7.32s 7.22 - - - 7.71s 7.56 - - 7.73s - - 7.64t 7.56 7.53d 7.17 - 7.82t 7.95 - - - 7.50m - - 7.94s 7.71 - - 7.79s	2-H 3-H 4-H 5-H Obs. Calc. Obs. Calc. Obs. Calc. − − − 7.10d 7.02 7.12d 7.07 − − 7.54d 7.56 − − 7.41d 7.46 − − 7.36s 7.46 7.32s 7.22 − − − − 7.71s 7.56 − − 7.73s 7.61 − − 7.64t 7.56 7.53d 7.17 − − 7.82t 7.95 − − − 7.50m 7.61 − − 7.94s 7.71 − − 7.79s 7.71	2-H 3-H 4-H 5-H 6- Obs. Calc. Obs. Calc. Obs. Calc. Obs. - - - 7.10d 7.02 7.12d 7.07 7.46d - - 7.54d 7.56 - - 7.41d 7.46 7.94s - - 7.36s 7.46 7.32s 7.22 - - 7.91s - - 7.71s 7.56 - - 7.73s 7.61 8.26d - - 7.64t 7.56 7.53d 7.17 - - 8.15d 7.82t 7.95 - - - 7.50m 7.61 8.02s - - 7.94s 7.71 - - 7.79s 7.71 8.44s	2-H 3-H 4-H 5-H 6-H Obs. Calc. Obs.

Table 5. 1 H NMR observed and calculated δ (ppm) values of sodium salts of N-bromo-disubstituted benzene-sulphonamides.

s = singlet, d = doublet, t = triplet and m = multiplet.

of N-chloro-substituted benzenesulphonamides in 400 cm³ water, with constant stirring of the solution at room temperature. N,N-dibromosubstituted benzenesulphonamides separated out were filtered under suction, washed thoroughly with water until all the bromine adsorbed on the compound was completely eliminated and then dried in a vacuum desiccator for 24 h. N-bromosubstituted benzenesulphonamides were then obtained by dissolving N,N-dibromosubstituted benzenesulphonamides in 4 mol dm⁻³ NaOH. About 20 g of each N,N-dibromosubstituted benzenesulphonamide were dissolved with stirring in 30 cm³ of 4 mol dm⁻³ NaOH at room temperature. The resultant aqueous solution was cooled in ice. The pale yellow crystals of the N-bromosubstituted benzenesulphonamides were filtered under suction, washed quickly with a minimum of ice cold water and dried over phosphorus pentoxide. The purity of all N-bromosubstituted benzenesulphonamides was checked by determining the melting points (Table 1) and estimating the amounts of active bromine present in them.

2.2. Spectral Measurements

Infrared spectral measurements were made on a JASCO FT-IR-430 spectrophotometer (Japan). The resolution was set to 2 cm⁻¹ and the scanning range was from 400 to 4000 cm⁻¹. The spectra were measured in the solid state as pressed KBr pellets (13 mm).

The proton NMR spectra of the compounds were measured on a BRUKER Ac 300F, 300 MHz FT-NMR

Table 6. Shifts in the position of benzene protons (δ 7.27) caused by substituents.

Substituent	Ortho	Meta	Para
CH ₃	-0.15	-0.1	-0.1
COOH	+0.8	+0.15	+0.2
$COOCH_3$	+0.8	+0.15	+0.2
CN	+0.3	+0.3	+0.3
$CONH_2$	+0.5	+0.2	+0.2
-COR	+0.6	+0.3	+0.3
SR	+0.1	-0.1	-0.2
NH_2	-0.8	-0.15	-0.4
I	+0.3	-0.2	-0.1
Br	0.0	0.0	0.0
Cl	0.0	0.0	0.0
F	0.30	0.02	0.22
CHO	+0.7	+0.2	+0.4
NHCOR	+0.4	-0.2	-0.3
NO_2	+1.0	+0.3	+0.4
OH	-0.4	-0.4	-0.4
OCH_3	-0.2	-0.2	-0.2
$OCOCH_3$	+0.2	-0.1	-0.2
SO ₃ H	+0.4	+0.1	+0.4

spectrometer, in D_2O with tetramethylsilane (Me₄Si) as internal standard. The experimental conditions are as follows; The spectral frequency (SF) was kept at 300.134 MHz, sweep width (SW) at 6024.096, pulse width (PW) at 8.0, relaxation delay (RD) of 1.0 s, acquisition time (AQ) 1.360 s, receiver gain (RG) 10, decoupling power (DP) 63L CPD, filter to suppress noise(LB) 0.0. The reference value (SR) was set at 4125.36 ppm for H_2O internally.

Carbon-13 NMR spectra of the compounds were measured in D_2O . Tetramethylsilane was used as the external reference standard. The following experimen-

		δ values (in ppm)										
i-X-C ₆ H ₄ SO ₂ – NaNBr.H ₂ O	C_1		$C_{2,6}$		$C_{3,5}$		C_4		Alkyl C			
where $i-X =$	Obs.	Calc.	Obs.	Calc.	Obs.	Calc.	Obs.	Calc.				
Parent	143.0	-	128.9	-	130.8	-	133.7	-	_			
4-CH ₃	139.9	140.1	127.0	127.9	131.3	131.3	144.9	143.0	22.6			
									29.7			
$4-C_2H_5$	139.6	140.4	126.7	126.9	129.7	130.1	150.3	149.3	16.2			
4-F	139.5	138.5	131.7	129.8	117.6	116.3	167.6	168.8	_			
4-C1	142.0	141.0	130.4	129.1	130.8	130.8	139.1	140.1	_			
4-Br	142.3	142.9	130.6	131.1	133.6	134.0	127.6	128.3	_			

Table 7. 13 C NMR observed and calculated δ (ppm) values of sodium salts of N-bromo-monosubstituted benzenesulphonamides.

Table 8. 13 C NMR observed and calculated δ (ppm) values of sodium salts of N-bromo-disubstituted benzene-sulphonamides.

		δ values (in ppm)											
i-X, j-Y-C ₆ H ₃ SO ₂ -NaNBr.H ₂ O		C ₁	C	2	C	3	C	4	C	5	C	6	Alkyl C
where i - X , j - Y =	Obs.	Calc.	Obs.	Calc.	Obs.	Calc.	Obs.	Calc.	Obs.	Calc.	Obs.	Calc.	
2,3-(CH ₃) ₂	143.0	143.6	139.2	138.9	139.2	140.6	131.2	134.3	129.0	127.6	125.6	125.9	20.4
$2,4-(CH_3)_2$	140.6	139.4	138.4	138.1	132.7	132.0	140.6	142.9	130.6	128.4	130.6	128.7	20.9
$2,5-(CH_3)_2$	137.2	142.3	135.2	135.3	131.2	131.2	134.0	134.3	137.2	137.0	_	129.5	21.5
													20.6
2-CH ₃ , 4-Cl	141.4	141.7	138.6	139.2	133.8	131.5	138.2	140.0	127.5	127.9	133.1	129.8	21.6
2-CH ₃ , 5-Cl	137.7	144.7	135.7	136.2	132.5	132.3	133.2	133.8	135.4	134.1	130.7	129.0	21.5
3-CH ₃ , 4-Cl	141.6	140.9	129.3	130.6	138.7	140.8	139.3	140.8	131.3	130.7	127.7	127.0	21.5
2,4-Cl ₂	139.5	141.2	134.5	136.3	133.2	131.0	139.5	141.1	129.0	128.8	129.0	130.9	-
3,4-Cl ₂	143.5	142.0	130.9	130.1	134.3	137.2	137.2	140.3	132.7	131.8	128.6	127.9	

tal conditions were employed in the spectral measurement of carbon-13: The spectral frequency (SF) was kept at 75.469 MHz, sweep width (SW) at 22727.273, pulse width (PW) at 5.0, relaxation delay (RD) of 1.0 s, acquisition time (AQ) was 0.360 s, receiver gain (RG) 400, decoupling power (DP) 14H CPD, filter to suppress noise(LB) 6.0, reference value (SR) 701.89 ppm for DMSO at 39.5 ppm externally.

3. Results and Discussion

3.1. Infrared Spectra

The selected infrared absorption frequencies of the studied salts are shown in Tables 2 and 3. The assignment of various frequencies to different modes of vibrations are indicated in the tables. The N-Br vibrational frequencies, v_{N-Br} , of the N-bromoarylsulphonamides vary in the range $945-925~{\rm cm}^{-1}$ in comparison with the N-Cl vibrational frequencies, v_{N-Cl} , observed in the range of $950-927~{\rm cm}^{-1}$ for the corresponding N-chloroarylsulphonamides. The asymmetric and symmetric SO₂ stretching vibrations appear in the ranges $1391-1352~{\rm cm}^{-1}$ and $1148-1131~{\rm cm}^{-1}$ for the monosubstituted N-bromo-arylsulphonamides and $1391-1331~{\rm cm}^{-1}$ and $1149-1121~{\rm cm}^{-1}$ for

Table 9. Incremental shifts of the aromatic carbon atoms of monosubstituted benzenes (ppm from benzene at 128.5 ppm, +downfield, —upfield).

Sub-	C-1	C-2	C-3	C-4	C of substituent
stituent	(Att.)				(ppm from TMS)
Н	0.0	0.0	0.0	0.0	-
CH_3	+9.3	+0.7	-0.1	2.9	21.3
CH_2CH_3	+15.6	0.5	0.0	2.6	29.2 (CH ₂), 15.8 (CH ₃)
$CH(CH_3)_2$	+20.1	2.0	0.0	2.5	34.4 (CH), 24.1 (CH ₃)
C_6H_5	+12.1	-1.8	-0.1	-1.6	-
OH	+26.6	-12.7	+1.6	-7.3	
OCH_3	+31.4	-14.4	+1.0	-7.7	-54.1
COOH	+2.9	+1.3	+0.4	+4.3	168.0
NH_2	+19.2	-12.4	+1.3	-9.5	_
NO_2	+19.6	-5.3	+0.9	+6.0	_
F	+35.1	-14.3	+0.9	-4.5	-
Cl	+6.4	+0.2	+1.0	-2.0	-
Br	-5.4	+3.4	+2.2	-1.0	-
I	-32.2	+9.9	+2.6	-7.3	-
SO ₂ NH ₂	+15.3	- 2.9	+0.4	+3.3	

the disubstituted N- bromocompounds. These stretching vibrations for the N-chloroarylsulphonamides appear in the ranges $1388-1303~{\rm cm^{-1}}$ and $1150-1132~{\rm cm^{-1}}$ for the monosubstituted compounds, and $1390-1370~{\rm cm^{-1}}$ and $1190-1130~{\rm cm^{-1}}$ for the disubstituted N-chloroarylsulphonamides [11]. The ranges reported for the non-halogenated compounds

are 1389-1327 cm⁻¹ and 1187-1147 cm⁻¹, respectively [10].

The assignment of other frequencies to various modes of vibrations of the ring (Tables 2 and 3) are similar to those in arylsulphonamides [10], N-chloroarylsulphonamides [11] and other aromatic organic compounds [19, 20]. The precise frequency or wavelength at which a specific group absorbs is dependent on its electron environment within the molecule and on its physical state.

3.2. NMR (¹H and ¹³C) Spectra

¹H NMR Spectra: The ¹H chemical shift values of N-bromoarylsulphonamides are shown in Tables 4 and 5. Since the chemical shift is dependent on the electron density around the nucleus or associated with the atom to which it is bonded, the chemical shifts of aromatic protons in all the N-bromoarylsulphonamides have been calculated by adding substituent contributions (Table 6) to the shift of benzene (7.27 ppm), as per the principle of substituent addition:

The incremental shifts of the aromatic protons (ppm

- [1] B. T. Gowda and D. S. Mahadevappa, Talanta **30**, 359 (1983).
- [2] B. T. Gowda and D. S. Mahadevappa, J. Chem. Soc., Perkin Trans. 2, 323 (1983).
- [3] B. T. Gowda, B. S. Sherigara, and D. S. Mahadevappa, Microchem. J. 34, 103 (1986).
- [4] B.T. Gowda and J.I. Bhat, Tetrahedron 43, 2119 (1987).
- [5] B. T. Gowda and R. V. Rao, J. Chem. Soc., Perkin Trans. 2, 355 (1988).
- [6] B. T. Gowda and B. S. Sherigara, Int. J. Chem. Kinet. 21, 31 (1989).
- [7] B. T. Gowda and P. Ramachandra, J. Chem. Soc., Perkin Trans. 2, 1067 (1989).
- [8] B. T. Gowda and B. H. A. Kumar, Indian J. Chem. 42A, xxx (2003).
- [9] B. T. Gowda, J. D. D'Souza, and K. R. Bhat, J. Indian Chem. Soc. 78, 412 (2002).
- [10] B. T. Gowda, K. Jyothi and J. D. D'Souza, Z. Naturforsch. 57a, 967 (2002).

from those of benzene proton values of 7.27) for different substituents are shown in Table 6 and are used in the calculation. The shifts in aromatic protons due to -SO₂NaNBr were calculated, comparing the values of the sodium salt of N- bromobenzene-sulphonamide (8.10, 7.71) with those of the benzene proton value 7.27 ppm. The values are $H_o(2,6) = +0.83$ and $H_m(3,4,5) = +0.44$. The calculated chemical shifts for different protons are shown in Tables 4 and 5. There is good agreement between the calculated and experimental chemical shifts.

¹³C NMR Spectra: The ¹³C chemical shifts of sodium salts of N-bromo-substituted benzenesulphonamides are shown in Tables 7 and 8. The chemical shifts of the aromatic carbon-13 in all the N-bromoarylsulphonamides have also been calculated by adding the substituent contribution to the shift of benzene (128.5 ppm), similar to the procedure employed with aromatic protons. These incremental shifts for different substituents [19,21] are shown in Table 9 and used in the calculation. The shifts in aromatic protons due to -SO2NaNBr were calculated comparing the values of the sodium salt of Nbromobenzenesulphonamide with those of the benzene carbon-13 value of 128.5 ppm. The values are ${}^{13}\text{C-1} =$ +12.89, ${}^{13}\text{C-4} = +5.22$, ${}^{13}\hat{\text{C}}\text{-2}$ or 6 = -1.99 and ${}^{13}\text{C-3}$ or 5 = +2.03. The calculated chemical shifts for different aromatic carbons are also shown in Tables 7 and 8. The agreement between the calculated and experimental chemical shifts is quite good.

- [11] B. T. Gowda, J. D. D'Souza, and B. H. A. Kumar, Z. Naturforsch. 58a, 51 (2003).
- [12] B. T. Gowda, K. Jyothi and N. Damodara, Z. Naturforsch. 58a (2003), in press.
- [13] B. T. Gowda, K. Jyothi, J. Kožišek, and H. Fuess, Z. Naturforsch. 58a (2003), in press.
- [14] F. D. Chattway, J. Chem. Soc. 87, 145 (1905).
- [15] H. D. Dakin, J. B. Cohen, M. Dufrence, and Kenyon, J. Proc. Roy. Soc. (B) 89, 232 (1917).
- [16] A. I. Vogel, Quantitative Organic Analysis; Longman, London 1958.
- [17] R.B. Baxter and F.D. Chattway, J. Chem. Soc. 107, 1814 (1915).
- [18] B. T. Gowda and D. S. Mahadevappa, Microchem. J. 28, 374 (1983).
- [19] R. M. Silverstein, G. C. Bassler, and T. C. Morrill, Spectrometric Identification of Organic Compounds; John Wiley and Sons, New York 1991.
- [20] W. Kemp, Organic Spectroscopy; MacMillan, London 1996.
- [21] D. E. Ewing, Org. Magn. Reson. 12, 499 (1979).